位移传感器光栅的原理和应用

摘要:本文介绍了位移传感器的种类,常用位移传感器计量光栅的测量原理,信号处理和具体应用,对四倍频专用集成电路QA740210做了简单介绍。
  关键词:位移、计量光栅、莫尔条纹、辨向、细分、加/减计数器、89C2051单片机、实时性
    一、概述
   位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。
    二、原理
   计量光栅是利用光栅的莫尔条纹现象来测量位移的。莫尔原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成102550100250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了。由图1可得光电信号为
    u 0 = U平均+Um sin(π/2+2πX/W)
  式中 u 0 —光电元件输出的电压信号;
     U平均输出信号的直流分量;
    Um —输出信号中正弦交流分量的幅值。
   从公式中可见,当光栅位移一个节距W,波形变化一周。这时相应条纹移动一个条纹宽度B。因此,只要记录波形变化周期数即条纹移动数N,就可知道光栅的位移XX=NW

image.png 


    三、信号处理
   1、辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01u02,经过整形后得到两个方波信号u01’u02’。光栅正向移动时u01超前u02 90度,反向移动时u02超前u01 90度,故通过电路辨相可确定光栅运动方向。

image.png 


    2、细分技术 随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。如一个周期内发出n个脉冲,则可使测量精度提高n备,而每个脉冲相当于原来栅距的1/n。由于细分后计数脉冲频率提高了n倍,因此也称n倍频。通常用的有两种细分方法:其一、直接细分。在相差1/4莫尔条纹间距的位置上安放两个光电元件,可得到两个相位差90o的电信号,用反相器反相后就得到四个依次相差90o的交流信号。同样,在两莫尔条纹间放置四个依次相距1/4条纹间距的光电元件,也可获得四个相位差90o的交流信号,实现四倍频细分。其二、电路细分。电路细分有很多种方法,图3是最基本的一种二倍频细分电路。

image.png 


    四、专用集成电路
    四倍频专用集成电路QA740210同时具有辨相和四倍频细分的功能,可将两路正交的方波进行四倍频后产生两路加、减计数信号,可送双时钟可逆计数器进行加、减计数,也可直接送微型计算机(包括单片机)进行数据处理。
   1、特点:
   ⑴、数字化微分电路:4路微分信号脉宽由主频周期决定,因此,是一致的,而且可在很大范围里方便地选择。 
   ⑵、临界报警与过速报警两档速度提示:可在光栅运动速度接近极限值时给出临界报警信息,以便操作者及时控制光栅运动快慢。在速度超过极限值时本电路将给出出错信息。 
   ⑶、绝对零位控制:绝对零位的设置将给操作者带来许多方便,如故障断电后的重新定位等。本电路有到绝对零位开始计数到绝对零位停止计数,以及与绝对零位无关三种工作模式。
   ⑷、片选:本电路设有片选端,可以构成多标数显系统。 
   ⑸COMS工艺:输入输出的电压电流与4000系列CMOSLSTTL电路兼容。
   2、各脚功能详解:
  管脚1:振荡器0。(X0) 它既可以与X1X2构成振荡器,也可以作为外部时钟的输入端。
  管脚2:正交信号1。(0o)接收光栅尺传送过来的信号,也可以接收SJ02045细分电路)产生的信号。这个信号应为方波。本电路将对0o与管脚3接收的90o正交方波进行四倍频,并根据0o90o之间的相位关系进行相位判别。
  管脚3:正交信号2。(90o)本管脚接收一个与管脚2在相位上相差90o的方波号,(参见管脚2的说明)。
  管脚4:减计数脉冲输出。(-CPo)此管脚常态为高电平,当有输出时,为一个与振荡器中X高电平等宽的负脉冲,此管脚应接双时钟可逆计数器的减计数时钟端。
  管脚5:加计数脉冲输出。(+CPo)(参见脚4说明)此管脚应接双时钟可逆计数器的加计数时钟端。
  管脚6:负号输出端(MSo) 可指示光栅尺与设定零位的相对位置,在片选时可由Msi予置,此时MSoMsi同电平。0o如超前90o则当全“0”信号输入后,此端为低,90o如超前0o则当全“0”信号输入后,此端为高,此端可直接驱动LED
  管脚7:全“0”信号输入端。(AZi)此管脚接收可逆计数器传送过来的一个正脉冲信号,(宽度≥1个主频周期),它的输入使本来-CPo有输出,变成+CPo有输出。
  管脚8:负号输入端。(MSi 
  可逆计数器所显示数不为“0”的情况下,表1成立。此端在片选选中时起作用。 
  

image.png

  
  管脚10:清零输入。(/CE)清除报错信号,并使ABS功能处于A模式,此端在片选时起作用,低电平有效。
  管脚11:片选输入(/CS)使用电路可以用于多坐标数显表,低电平选中,/CE/ABSCMsi才起作用。
  管脚12:绝对零位模式选择。(/ABSC)本脚需要输入一个负脉冲。片选并清零后,本脚输入负脉冲的个数决定ABS的三个模式: 
    输入0个脉冲,A模式,绝对零(ABSZ)输入不起作用; 
    输入奇数个脉冲,B模式,绝对零(ABSZ)输入后CPo才有输出; 
    输入偶数个脉冲,C模式,绝对零(ABSZ)输入后CPo停止输出。
   管脚13:绝对零输入。(ABSZ)本脚需要输入一个正脉冲。由光栅尺或0204电路给出,如果一个光栅尺有若干个绝对零位输出,则只有第一个起作用(参见管脚12)。
   管脚14:绝对零位标志。(FABSA模式时,FABS=1B模式时,FABS=0C模式时,FABS为一串脉冲,(与XO同频同相)
   管脚15:速度报警输出。(WARN 设本电路主频(X2)为Fx,0o90o)的输入频率Fi1/8Fx时,WARN=“0”,1/8Fx≤Fi1/6Fx,WARN有正脉冲出现,宽度与0o输入的方波相同。当Fi降到1/8Fx以下后,此端自动恢复为“0”,当Fi≥1/6Fx时,WARN=“1”,此“1”电平只有当片选选中且完成清零(即/CS=0/CE=0)后才能恢复为“0”电平。
   管脚16:振荡器I。(X1)与X0X2构成振荡器。
   管脚17:振荡器O。(X2)与X0X2构成振荡器。也可用作主频输出。


您的评论
用户评论
相关文档推荐
热门标签